基于CNN算法的稳态体感诱发电位的特征识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.0258-8021.2019.03.006

基于CNN算法的稳态体感诱发电位的特征识别

引用
脑-机接口研究可为瘫痪病人的康复带来一种新的治疗方法.已有研究表明对手指或者正中神经施加一定频率的体感刺激,会引发相同频率且具有空间特异性的稳态体感诱发电位.为优化基于稳态体感诱发电位的脑-机接口的性能,通过快速傅里叶变换寻找12个健康被试的个人左手特定共振频率,采用事件相关谱扰动进行时频分析,检测其稳态体感诱发电位信号.基于共振频率对实验诱发的脑电信号进行1 Hz带通滤波,获得特定频带的数据,采用卷积神经网络(CNN)学习算法对其进行分类,并与采用共空间模式和支持向量机的特征提取及特征分类的方法(CSP+SVM)进行比较.所有被试的结果显示:基于共振频率滤波方法,采用CNN学习算法获得的离线分类准确率均高于85%,并且CNN学习算法的分类准确率显著性优于CSP+SVM的分类准确率(91.8%±5.9% vs77.4%±8.5%,P<0.05).因此,在基于稳态体感诱发电位的脑机接口的特征识别中,CNN学习算法相比传统使用的机器学习分类算法(如共空间模式+支持向量机)能够显著提升分类准确率,提高脑机接口的整体性能.

脑-机接口、稳态体感诱发电位、共振频率、卷积神经网络

38

R318(医用一般科学)

河北省高等学校科学技术研究项目QN2017048;河北省自然科学基金F2017202197

2019-07-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

298-305

相关文献
评论
暂无封面信息
查看本期封面目录

中国生物医学工程学报

0258-8021

11-2057/R

38

2019,38(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn