基于AR模型和支持向量机的急性低血压预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.0258-8021.2011.02.013

基于AR模型和支持向量机的急性低血压预测

引用
ICU中,急性低血压的发生严重威胁着患者的生命安全,临床上对其预测性判断主要依靠医生经验.为实现急性低血压预测,利用PhsioNet的MIMIC Ⅱ数据库ICU监护中的患者临床记录,对发生与未发生急性低血压两者间的平均动脉压信号进行AR模型的功率谱估计,运用医学信息学理论,选取功率谱幅度的中位数、平均值、最大值、标准偏差和极差用于支持向量机分类预测器的学习和训练,建立分类预测模型.预测模型对测试集进行分类预测,得到预测正确率为87.5%,表明相对于直接提取患者平均动脉压信号的统计特征参数作为预测特征,本方法具有更好的预测效果,有利于实现急性低血压提前预测.

急性低血压、AR模型、功率谱、支持向量机、预测

30

R318.04(医用一般科学)

广东省科技计划项目2009B030801004

2011-07-04(万方平台首次上网日期,不代表论文的发表时间)

共6页

250-255

相关文献
评论
暂无封面信息
查看本期封面目录

中国生物医学工程学报

0258-8021

11-2057/R

30

2011,30(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn