10.3969/j.issn.0258-8021.2011.02.011
基于多目标交叉变异粒子群算法的多模医学图像非刚性配准
以互信息为相似性测度,采用B样条变换对多模态医学图像进行非刚性配准时,由于噪声及图像插值等原因造成的互信息局部极值使得传统优化方法不能搜索到最佳配准参数.为此,使用粒子群智能优化方法作为搜索策略,以降低对图像预处理的要求,进一步提高基于互信息的非刚性配准的鲁棒性.为了克服粒子群算法受初始值选取等因素的影响易陷于局部最优的缺点,使用LBFGS优化得到的结果构造初始粒子群,采用多目标优化方法结合交叉变异策略加以改进,使得算法在解空间搜索的遍历性得到改善,优化结果更接近全局最优.MR-T2与MR-PD图像的配准实验证明,该方法提高了基于互信息的B样条非刚性配准的鲁棒性,配准率达到94% ;CT与PET图像的配准实验表明该方法相比惯性权重粒子群算法提高了配准精度,互信息增加了0.026;另外,CT与CBCT图像的配准实验也验证了本方法的有效性.
非刚性配准、互信息、多目标优化、粒子群算法、交叉变异
30
TP391(计算技术、计算机技术)
国家自然科学基金30870666
2011-07-04(万方平台首次上网日期,不代表论文的发表时间)
共8页
232-239