基于Gibbs随机场的有限混合模型改进与脑部MR图像的稳健分割
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.0258-8021.2003.03.001

基于Gibbs随机场的有限混合模型改进与脑部MR图像的稳健分割

引用
有限混合(FM)模型已经广泛地应用于图像分割,但是由于没有考虑空间信息,导致分割的结果对噪声很敏感,分割出的区域存在很多杂散的孤立点.本文在Gibbs随机场理论的指导下,将空间信息引入FM模型,提出了改进的脑部MR图像分割算法.此外,由树形K平均聚类来估计初始参数,实现了全自动的图像分割.本研究进行了仿真MR图像和真实MR图像的分割实验,定量的数据分析表明,我们所提的改进算法对噪声不敏感,可以更精确地将脑部MR图像标记为灰质、白质与脑脊液三种组织类型.

有限混合模型(FM)、期望最大化算法(EM)、Gibbs随机场、磁共振成象(MRI)、图像分割

22

R318.04(医用一般科学)

国家自然科学基金30130180;国家自然科学基金698720387

2004-01-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

193-198

相关文献
评论
暂无封面信息
查看本期封面目录

中国生物医学工程学报

0258-8021

11-2057/R

22

2003,22(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn