基于贝叶斯多变量联合模型的体检人群脑卒中发病风险因素的纵向研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12114/j.issn.1007-9572.2022.0695

基于贝叶斯多变量联合模型的体检人群脑卒中发病风险因素的纵向研究

引用
背景 脑卒中是目前影响人类健康的主要公共卫生问题之一;健康体检纵向数据累积了大量的健康信息,由于缺失数据多、样本量小等诸多问题,导致其利用率低、重要信息未能得到充分挖掘,进而对常见慢性病的有效防控等工作带来一定困难.目的 基于贝叶斯多变量联合模型,探讨体检人群脑卒中发病风险因素,为慢性病风险因素分析提供新的方法.方法 本研究使用空军军医大学西京医院健康医学中心2008—2015年的体检资料.随访情况:以首次发生脑卒中为结局事件,发生结局事件立即停止随访;若未发生,到2015年体检信息收集完成后结束随访;体检间隔时间为1年.依据随访过程中是否发生脑卒中分为脑卒中组和非脑卒中组.纵向观察变量包括总胆固醇(TC)、三酰甘油(TG)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、体质指数(BMI)和收缩压(SBP).采用多因素Cox回归模型分析基线情况对脑卒中结局事件的影响;采用贝叶斯多变量联合模型,分析随访过程中TC、TG、LDL-C、HDL-C、BMI和SBP的纵向变化轨迹对脑卒中发病的影响.结果 本研究共纳入234例研究对象,1581条纵向随访记录,平均随访时间为(7.4±1.2)年,其中70例(29.9%)在随访过程中发生脑卒中.多因素Cox回归模型结果显示:基线TC、TG、LDL-C、HDL-C、BMI、SBP对脑卒中发病均无影响(P>0.05).贝叶斯多变量联合模型结果显示:TG每纵向升高1 mmol/L,脑卒中发病风险升高1.863倍〔95%CI(1.018,3.294),P=0.042〕;LDL-C每纵向升高1 mmol/L,脑卒中发病风险升高1.347倍〔95%CI(1.045,1.863),P=0.046〕.结论 TG、LDL-C水平随时间变化的纵向升高是体检人群脑卒中发病的危险因素;贝叶斯多变量联合模型可用于体检人群的慢性病风险因素探讨研究中.

卒中、体格检查、贝叶斯联合模型、Cox回归模型、血脂异常、危险因素

26

R743(神经病学与精神病学)

国家自然科学基金;国家自然科学基金;国家统计局课题;山东省自然科学基金资助项目;山东省高等学校青创人才引育计划;山东省高等学校青创人才引育计划;潍坊医学院博士启动基金项目

2023-02-24(万方平台首次上网日期,不代表论文的发表时间)

共7页

1437-1443

相关文献
评论
暂无封面信息
查看本期封面目录

中国全科医学

1007-9572

13-1222/R

26

2023,26(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn