遗传算法联合LS-SVM的苹果原醋成分定量分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11882/j.issn.0254-5071.2016.01.026

遗传算法联合LS-SVM的苹果原醋成分定量分析

引用
利用近红外光谱技术对苹果原醋中的重要指标进行定量分析,并进行模型优化以提高性能.采用遗传偏最小二乘法(GA-PLS)提取的特征波长作为最小二乘支持向量机(LS-SVM)的输入变量,先后建立苹果原醋中总酸、可溶性固形物的近红外定量模型,并与建立的偏最小二乘(PLS)模型结果进行比较.用决定系数(R2)、预测均方根误差(RMSEP)以及相对分析误差(RPD)对模型进行评价,确定最佳建模方法.结果表明,相比于PLS模型,总酸及可溶性固形物指标的LS-SVM定量模型的R2、RMSEP以及RPD值均有更好的表现,且在进行独立测试集验证时,LS-SVM模型的预测精度也明显优于PLS模型.说明遗传算法联合LS-SVM建立的定量模型有很高的准确度及稳定性,可以应用于苹果原醋总酸和可溶性固形物含量的快速检测.

苹果原醋、近红外光谱技术、最小二乘支持向量机、遗传算法、波段筛选

35

TS261.7(食品工业)

科技部科研院所技术开发研究专项2013EG111212

2016-03-15(万方平台首次上网日期,不代表论文的发表时间)

共5页

120-124

相关文献
评论
暂无封面信息
查看本期封面目录

中国酿造

0254-5071

11-1818/TS

35

2016,35(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn