基于无人机影像的冬小麦深度学习分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7621/cjarrp.1005-9121.20200418

基于无人机影像的冬小麦深度学习分类

引用
[目的]传统分类方法存在人为主观选择特征、 模型无法在大范围泛化的问题,文章利用非监督特征学习的深度学习方法进行冬小麦识别,以解决传统分类方法无法在大范围进行自动化作物识别的不足.[方法]该文集成残差网络(Residual Nets,ResNets)和金字塔场景解析网络(Pyramid Scene Parsing Network,PspNets)构建Res.PspNet,进行冬小麦深度学习自动化分类.在山东全省获取80个村的无人机航拍影像,利用米级遥感影像和对应的标记样本作为"海量标记样本"训练土地覆盖识别模型,以此为基础模型迁移训练冬小麦分类模型,自动提取出冬小麦分布.[结果]实验结果表明,以训练出的土地覆盖数据作为基础模型训练冬小麦模型,收敛速度快,具有很好的泛化性,在不同农业景观调查村中均得到比较准确的结果.从整体验证区域来看,冬小麦总体精度达到了90%以上,区域冬小麦总面积精度达到99%.平原区冬小麦识别精度更高,总体精度达到了90%以上,区域面积精度达到99%,表明模型对冬小麦种植地块规整、 生长状态均质的区域,识别精度较高,而山区由于地块破碎、 冬小麦长势差异较大,空间卷积会弱化小麦特征且出现"同物异谱"现象,这影响了在该区域内冬小麦的识别精度.[结论]Res.PspNet卷积神经网络能够有效地学习出无人机影像的特征,实现了基于航片影像进行非监督自动化冬小麦"端—端"分类,这也将一定程度上降低冬小麦提取的工作量.

卷积神经网络、ResNet、PspNet、迁移学习、山东

41

S127;F307.1(农业物理学)

山东省第三次农业普查无人机飞行测量服务项目

2020-08-06(万方平台首次上网日期,不代表论文的发表时间)

共9页

150-158

相关文献
评论
暂无封面信息
查看本期封面目录

中国农业资源与区划

1005-9121

11-3513/S

41

2020,41(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn