基于日气温特征值与冷/热积量模型耦合的苹果始花期预报模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-6362.2022.04.005

基于日气温特征值与冷/热积量模型耦合的苹果始花期预报模型

引用
以临猗、洛川和栖霞3个富士系苹果主产区为研究区,基于2019?2020年各地调查样点的1km格网气象数据、实际始花期数据以及冷小时模型(Chilling Hour Model,CHM)和生长度小时(Growing Degree Hour,GDH)模型,利用网格搜索法得到苹果始花期最优冷/热需求量;然后将日气温特征值(日最高温Tmax、日最低温Tmin和日平均温Tavg)划分为单因子、双因子和三因子7种日气温特征因子组合方式,利用随机森林算法(Random Forest,RF)构建3个地区不同日气温特征因子组合下的日冷/热积量模型,以筛选最优日气温特征因子;在此基础上,基于最优日气温特征因子,利用RF构建苹果始花期预报模型,并通过独立实际始花期数据对预报模型进行精度评价.结果表明:(1)临猗地区的苹果始花期最优冷/热需求量分别为730CH和7350GDH,洛川地区分别为345CH和4950GDH,栖霞地区分别为520CH和4450GDH;(2)7种日气温特征因子组合中,Tmax、Tmin和Tavg三因子组合下的3个地区日冷/热积量模型在估算日冷/热积量时均具有较高的准确性,日冷积量估算值与基于CHM模型得到的日冷积量间的RMSE为0.97~2.50CH,日热积量估算值与基于GDH模型得到的日热积量间的RMSE为1.73~15.76GDH;(3)利用苹果始花期预报模型估算日冷/热积量,日冷/热积量估算值与基于CHM/GDH模型得到的日冷/热积量间的RMSE分别为1.08~1.14CH和2.03~3.74GDH;当利用该模型进行苹果始花期预报时,预报值与实际值R2为0.92,RMSE为3.44d,其精度与基于真实逐小时气温数据的精度整体一致,表明本研究构建的苹果始花期预报模型可以有效将输入气温数据从逐小时尺度转换为日尺度,这在后续苹果始花期预报工作中具有较好的应用价值和潜力.

苹果、始花期、随机森林、预报模型、冷/热积量

43

P468.0+21;S663.1;TV124

国家自然科学基金;国家重点研发计划;广东省科技计划项目;广东省重点领域研发计划

2022-04-27(万方平台首次上网日期,不代表论文的发表时间)

共13页

295-307

相关文献
评论
暂无封面信息
查看本期封面目录

中国农业气象

1000-6362

11-1999/S

43

2022,43(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn