10.3864/j.issn.0578-1752.2018.11.006
基于多特征融合和稀疏表示的农业害虫图像识别方法
[目的]在农业害虫测报中,常常需要从大量的昆虫中识别出几种重要的测报害虫.目前基于图像的农业害虫识别研究,大部分是在有限种类有限样本量基础上进行的农业害虫识别.本研究为了从大量的水稻昆虫图像中识别出9种水稻测报害虫,尝试提出了一种基于多特征融合和稀疏表示的农业害虫图像识别方法.[方法]首先,为了获得最优的农业害虫识别模型,将所有图像进行旋转使昆虫头朝上,按照1∶2长宽比裁剪图像,使昆虫居中并占据图像大部分区域,将图像进行等比例缩放至统一尺寸48×96像素.提取所有昆虫的HSV颜色特征、局部特征中的HOG特征、Gabor特征和LBP特征.然后,利用单一特征和融合特征分别对训练样本构建过完备字典,字典中的每一个列向量表示一个训练样本,且满足同一类训练样本均在同一个子空间中;应用过完备字典对测试图像进行多特征稀疏表示,通过求解l1范数意义下的优化问题获取稀疏解,使得除测试样本所在的类别外其他的训练样本的系数都是零或接近零的数值.最后,计算稀疏集中指数阈值,用于判断测试样本的有效性,如果测试样本的稀疏集中指数大于该阈值,则认为最小残差所对应的类别即为测试样本的类别,否则认为该测试样本为非测报昆虫.同时,利用相同的特征和训练样本训练SVM分类器对测试样本进行测试,与稀疏表示害虫识别模型进行比较.[结果]利用单一特征训练的稀疏表示害虫识别模型中,基于HOG特征的稀疏表示识别模型获得了9种测报害虫较高的识别率和较低的误检率,分别为87.0%和7.5%;利用颜色特征分别与3种局部特征进行结合获得的稀疏表示识别模型,测试结果表明,基于颜色和HOG特征的稀疏表示识别模型获得了最高的识别率和最低的误检率,分别为90.1%和5.2%;将颜色、HOG和Gabor 3个特征结合获得的稀疏表示识别模型,识别率下降为83.5%,误检率上升为10.3%.利用同样的特征或特征融合训练得到的支持向量机分类器,识别率均低于对应特征获得的稀疏表示识别模型的识别率,而误检率均高于对应特征训练的稀疏表示害虫识别模型的误检率.[结论]基于颜色和HOG融合特征的稀疏表示识别模型获得了较高的农业害虫识别率和较低的误检率;通过稀疏集中指数阈值,有效地排除了非测报昆虫,实现了从大量的农业昆虫中自动识别出需要测报的害虫.
农业测报害虫、特征融合、稀疏表示、识别模型、支持向量机
51
国家863计划资助项目2013AA102402;浙江省公益技术研究计划项目LGN18C140007
2018-08-27(万方平台首次上网日期,不代表论文的发表时间)
共10页
2084-2093