不同光谱植被指数反演冬小麦叶氮含量的敏感性研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

不同光谱植被指数反演冬小麦叶氮含量的敏感性研究

引用
[目的]氮素是作物生长发育过程中最重要的营养元素之一,研究叶氮含量反演的有效光谱指标设置,为应用高光谱植被指数反演作物叶氮含量,以及作物的实时监测与精确诊断提供重要依据.[方法]以冬小麦为例,选取涵盖冬小麦全生育期不同覆盖程度225组冠层光谱与叶氮含量数据,通过遥感方法建立模型,模拟了不同光谱指标,即中心波长、信噪比和波段宽度对定量模型的影响,通过模型精度评价指标决定系数(coefficient of determination,R2)、根均方差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、平均相对误差(mean relative error,MRE)和显著性检验水平(P<0.01)确定最优模型及最佳指标,分析光谱指标对叶氮含量定量模型反演的敏感性和有效性.[结果]反演冬小麦叶氮含量的最佳植被指数为MTCI_B,与实测叶氮含量的相关性最好(R2=0.7674,RMSE=0.5511%,MAE=0.4625%,MRE=11.11个百分点,且P<0.01),对应的最佳指标为中心波长420 nm、508 nm和405 nm,波段宽度1 nm,信噪比大于70 DB;高覆盖状况反演的最优指数为RVIinf_r(R2=0.6739,RMSE=0.2964%,MAE=0.2851%,MRE=6.44个百分点,且P<0.01),最优中心波长为826 nm和760 nm;低覆盖状况反演的最优指数为MTCI(R2=0.8252,RMSE=0.4032%,MAE=0.4408%,MRE=12.22个百分点,且P<0.01),最优中心波长为750 nm、693 nm和680 nm;应用最适于高低覆盖的植被指数RVIinf_r和MTCI构建的联合反演模型(R2=0.9286,RMSE=0.3416%,MAE=0.2988%,MRE=7.16个百分点,且P<0.01),明显优于最佳单一指数MTCI_B;模拟Hyperion和HJ1A-HSI传感器数据,联合反演模型精度(R2为0.92—0.93,RMSE在0.37%—0.39%,MAE为0.285%左右,MRE约为7.00个百分点)明显优于单一植被指数反演精度(R2为0.79—0.81,RMSE为0.63%—0.66%,MAE为0.455%左右,MRE约为10.90个百分点).[结论]利用高光谱植被指数可有效实现作物叶氮含量反演,作物叶氮含量定量反演对不同光谱指标—中心波长、信噪比和波段宽度,具有较强敏感性.应用多指数联合反演模型,可显著提高反演精度,并且联合反演模型在不同高光谱传感器下有一定普适性.

叶氮反演、光谱指标、冬小麦、植被指数、高光谱遥感

50

S51;TP7

国家自然科学基金41371359,41671362;广西空间信息与测绘重点实验室开放基金151400727;高分辨率对地观测系统重大专项30-Y30B13-9003-14/16,11-Y20A40-9002-15/17

2017-03-30(万方平台首次上网日期,不代表论文的发表时间)

共12页

474-485

相关文献
评论
暂无封面信息
查看本期封面目录

中国农业科学

0578-1752

11-1328/S

50

2017,50(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn