10.3864/j.issn.0578-1752.2016.21.006
基于多时相HJ-1B CCD影像的玉米倒伏灾情遥感监测
[目的]通过对倒伏发生前后的多时相HJ-1B卫星CCD多光谱影像植被指数的变化分析,实现区域尺度下的玉米倒伏受灾范围监测和灾情评估.[方法]以2015年8月3日因大风暴雨导致大面积玉米倒伏的河北省藁城市为研究区,提取HJ-1B CCD多光谱影像的多种植被指数,根据多时相植被指数变化量与实测倒伏样本的关联分析,筛选玉米倒伏敏感植被指数,采用正态(偏正态)统计理论的双阈值划分策略划定阈值,构建基于植被指数变化分析的玉米倒伏灾情遥感监测模型,评价玉米倒伏灾情严重程度,并基于野外实测样本进行精度评价.[结果]基于城镇、水体、倒伏与未倒伏玉米的HJ-1B CCD2多光谱反射率曲线可得,玉米与城镇建筑物和水体的光谱反射率存在较大差异,在可见光波段,倒伏玉米要高于未倒伏玉米的反射率,然而在近红外波段(830nm),未倒伏玉米略高于倒伏玉米的反射率.由已提取出玉米种植区域后的前后两期HJ星的差值影像分析可得其像元整体分布趋势基本符合正态(偏正态)分布.由相关性分析可得,倒伏前后的比值植被指数(RVI)差值与玉米倒伏比例具有最高的相关性(R=0.9377),而且倒伏越严重,其RVI差值越大;通过野外实测样本与模型验证结果进行混淆矩阵分析,总体分类精度达到85.7%,Kappa系数为0.804;研究区玉米倒伏遥感空间制图结果与当地农业技术推广站监测结果基本一致.[结论]倒伏发生后,其玉米长势以及灾后恢复程度均存在较大差异,因此,基于玉米倒伏前后RVI差值的遥感监测模型能有效反映不同倒伏程度的冠层群体变化信息以及长势恢复情况,能在区域尺度下实现玉米倒伏受灾范围监测和灾情等级评估.
玉米、倒伏、植被指数、变化分析、多时相、监测
49
国家自然科学基金41571323、国家公益性行业农业科研专项201303109、北京市优秀人才青年拔尖个人项目2014000021223ZK38
2017-01-17(万方平台首次上网日期,不代表论文的发表时间)
4120-4129