10.3864/j.issn.0578-1752.2016.11.009
黄土高原煤矿区复垦农田土壤有机质含量的高光谱预测
[目的]针对黄土高原丘陵地多、地形复杂、有机质含量低、采样困难以及因采煤活动引起大面积土地损毁等问题,在土地复垦与综合整治过程中,为快速定量监测与评估复垦农田土壤质量提供一种新的方法.[方法]以山西省襄垣县复垦农田土壤为研究对象,选取由北向南土地损毁中间条带状区域采集样品152个,进行室内土壤农化分析、光谱测定,运用ParLes 3.1软件对光谱曲线进行多元散射校正(multipication scatter correction,MSC)、基线偏移(baseline offset correction,BOC)和Savitzky-Golay filter平滑去噪预处理.对土壤原始光谱反射率(raw spectral reflectance,R)作一阶微分(first order differential reflectance,D(R))和倒数的对数变换(inverse-lg reflectance,lg(1/R)),分析3种不同变换形式的光谱数据与土壤有机质含量的相关性,相关系数通过p=0.01水平显著性检验来确定显著性波段的范围.基于全波段(400-2400 nm)和显著性波段利用偏最小二乘回归(partial least squares regression,PLSR)分析方法建立该区域土壤有机质含量高光谱预测模型,通过模型精度评价指标:决定系数(coefficient of determination,R2)、均方根误差(root mean square error,RMSE)和相对预测偏差(residual prediction deviation,PRD)确定最优模型.[结果]通过P=0.01水平显著性检验的波段范围为:R的400-1 800、1880-2 400 nm;D(R)的420-790、1 020-1 040、2 150-2 200 nm;lg (l/R)的400-1 830、1 860-2 400 nm.光谱与有机质含量的相关系数绝对值最大的波段是R的800 nm;D(R)的600 nm;lg (l/R)的760 nm.进行D(R)变换,光谱曲线的吸收特征更加明显,相关系数在可见光(400-800 nm)波段范围内有所增加,其最大值由0.72提高到了0.82;基于显著性波段的PLSR建模效果优于全波段,其中1g (l/R)变换的预测精度为最佳,具有很好的预测能力,其校正模型的R2和RMSE分别为0.95、7.64,预测模型的R2、RMSE和RPD分别为0.85、3.00、2.56;基于全波段的R-PLSR和lg (1/R)-PLSR模型具有较好的预测能力,其预测模型的R2、RMSE和RPD分别为0.79、3.64、2.10和0.79、3.53、2.17,而D(R)-PLSR模型只能进行粗略估测,其预测模型的R2、RMSE和RPD分别为0.61、5.43、1.41.综合分析全波段和显著性波段3种光谱数据的预测精度,发现基于显著性波段的R-PLSR、D(R)-PLSR、lg (1/R)-PLSR模型均取得了显著的预测效果.[结论]研究区土壤光谱反射率与土壤有机质含量具有高度的相关性,应用偏最小二乘回归分析方法可以很好地建立土壤有机质含量反演模型.
煤矿区、复垦农田、土壤有机质、高光谱、偏最小二乘回归
49
S152;P462.6;TD82
国土资源部公益性行业科研专项;山西农业大学科技创新项目
2016-08-16(万方平台首次上网日期,不代表论文的发表时间)
2126-2135