水稻多时相植被指数特征及覆盖度提取研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13304/j.nykjdb.2022.0256

水稻多时相植被指数特征及覆盖度提取研究

引用
为准确快速获取水稻的植被指数特征和植被覆盖度信息,利用无人机采集水稻分蘖期、抽穗期和结实期的多光谱影像数据,选择不同类型的植被指数,利用样本统计法和植被指数交点法,提取并探究水稻3个生长期在地块和像元尺度下的植被指数特征,并运用阈值分割法提取水稻植被信息及覆盖度信息.结果表明,水稻3个生长期内,在像元和地块尺度下均表现出明显的物候特征,且与杂草和树木存在明显区别;多光谱植被指数的植被覆盖度提取精度整体高于可见光植被指数;归一化植被指数(normalized difference vegetation index,NDVI)对水稻3个时期植被覆盖度提取精度最高,提取误差分别为0.40%、0.43%和0.81%,R2为0.77、0.92和0.98,均方根误差(root mean square error,RMSE)为9.09%、2.97%和0.38%;可见光波段差异植被指数(visible-band difference vegetation index,VDVI)提取精度高于超绿红蓝差分指数(excess green-red-blue difference index,EGEBDI)和过绿减过红指数(excess green-excess red index,ExG-ExR),提取误差分别为4.30%、1.36%和1.60%,R2分别为0.53、0.77和0.80,RMSE分别为14.62%、3.70%和5.50%.该研究成果可为作物长势监测及其植被覆盖度提取提供技术支撑.

水稻、多时相、植被指数特征、无人机多光谱影像、植被覆盖度、植被指数

25

S511(禾谷类作物)

贵州省科技支撑计划项目;贵州省科技支撑计划项目;贵州科学院专项资金项目

2023-05-16(万方平台首次上网日期,不代表论文的发表时间)

共16页

83-98

相关文献
评论
暂无封面信息
查看本期封面目录

中国农业科技导报

1008-0864

11-3900/S

25

2023,25(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn