基于深度学习的高分辨率麦穗图像检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13304/j.nykjdb.2021.0612

基于深度学习的高分辨率麦穗图像检测方法

引用
小麦是重要的粮食作物之一,针对人工田间麦穗计数及产量预测效率低的问题,基于深度学习提出了一种高分辨率的小密集麦穗实时检测方法.对麦穗图像数据集进行图像分割、标注、增强预处理,基于Tensorflow搭建YOLOv4网络模型,调整改进后对其进行迁移学习;与YOLOv3、YOLOv4-tiny、Faster R-CNN训练模型进行对比,对改进模型的实用性与局限性进行分析;重点分析影响麦穗检测模型性能的关键因素.通过图像分割的方式,证明了通过改变图像分辨率确定麦穗所占图像最优像素比,可以提高前景与背景差异,对小密集麦穗有显著效果.通过对改进模型的测试,表明该模型检测精度高,鲁棒性强.不同分辨率、不同品种、不同时期的麦穗图像均类平均精度(mAP)为93.7%,单张图片的检测速度为52帧·s-1,满足了麦穗的高精度实时检测.该研究结果为田间麦穗计数以及产量预测提供技术支持.

深度学习、目标检测、麦穗、YOLOv4、实时检测

24

S126;TP391(农业物理学)

天津市科技计划项目;天津市教委科研计划项目;天津市企业科技特派员项目

2022-11-02(万方平台首次上网日期,不代表论文的发表时间)

共10页

96-105

相关文献
评论
暂无封面信息
查看本期封面目录

中国农业科技导报

1008-0864

11-3900/S

24

2022,24(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn