金鲳鱼贮藏品质BPNN和RBFNN预测模型的构建与评价
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11841/j.issn.1007-4333.2023.03.12

金鲳鱼贮藏品质BPNN和RBFNN预测模型的构建与评价

引用
针对金鲳鱼(Trachinotus ovatus)贮藏过程中品质变化难以预测的问题,测定金鲳鱼片在0、3、6、9、12 C贮藏条件下挥发性盐基氮质量分数(w(TVB-N))、菌落总数、K值和感官评价值,构建径向基函数神经网络(Radial basis function neural network,RBFNN)和反向传播神经网络(Back propagation neural network,BPNN)预测模型以预测品质,并对模型的预测结果进行残差分析和相对误差分析以评价预测准确度.结果表明:1)BPNN模型和RBFNN模型的残差都是随机且不规则的,说明2种模型都适用于预测金鲳鱼片的新鲜度,但RBFNN模型残差绝对值更小;2)对于4℃贮藏条件下金鲳鱼片的各项品质指标,BPNN模型预测相对误差绝对值小于15%(除K值第0天),RBFNN模型预测相对误差绝对值大部分小于5%,RBFNN模型预测相对误差绝对值较小.对于金鲳鱼片新鲜度的预测,RBFNN模型准确度较高,BPNN模型准确度较低,RNFNN模型更适合用于预测金鲳鱼贮藏品质.

金鲳鱼、贮藏、品质变化、神经网络预测模型

28

S984.1+1;TS251(水产物运输、保鲜、贮藏、加工、包装)

海南省重点研发计划;国家重点研发计划

2023-04-21(万方平台首次上网日期,不代表论文的发表时间)

共9页

131-139

相关文献
评论
暂无封面信息
查看本期封面目录

中国农业大学学报

1007-4333

11-3837/S

28

2023,28(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn