基于机器学习结合植被指数阈值的水稻关键生育期识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11841/j.issn.1007-4333.2020.01.09

基于机器学习结合植被指数阈值的水稻关键生育期识别

引用
为建立不依赖时序数据的水稻生育期识别模型,基于四波段辐射计(SKYE)获取的水稻全生育期每日的冠层光谱反射率数据,利用K近邻(k-nearest neighbors,KNN)、决策树(Decision trees)、支持向量机(Support vector machines,SVM)、随机森林(Random forests,RF)和梯度提升决策树(Gradient boosted decision trees,GBDT)共5种机器学习算法开展水稻生育期识别研究.结果 表明:RF算法的识别准确率最高,达93.00%,KNN算法的识别准确率也达到了91.92%,其他3种算法的准确率也都超过90%.在此基础上,将建立的水稻生育期识别模型应用至无人机(UAV)影像数据,KNN算法适用性最好,识别准确率为83.54%,RF算法的适用性一般,识别准确率为74.38%,SVM算法的适用性最差,识别准确率仅为62.92%,但5种机器学习算法都容易错误地将抽穗扬花期识别为拔节孕穗期;而新构建的KNN算法结合可见光大气修正指数(Visible atmospherically resistant index,VARI)的水稻生育期识别模型对无人机数据的识别准确率可达86.04%,与单独应用KNN算法相比,对水稻各个生育期的识别精度更加均衡.

水稻、生育期、光谱反射率、机器学习、植被指数

25

S51(禾谷类作物)

中央高校基本科研基金;国家高技术研究发展计划863计划

2020-04-24(万方平台首次上网日期,不代表论文的发表时间)

共10页

76-85

相关文献
评论
暂无封面信息
查看本期封面目录

中国农业大学学报

1007-4333

11-3837/S

25

2020,25(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn