油菜地块边界提取研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13733/j.jcam.issn.2095-5553.2023.04.019

油菜地块边界提取研究

引用
油菜地块精准提取可实现道路、田埂和地块三部分的分离,为植保无人机提供准确作业区域和非作业区域,推动植保无人机实现自主作业.基于甘肃省张掖市民乐县油菜地无人机低空RGB影像,构建基于简单线性迭代聚类(SLIC)分割和VGG16分类网络相结合的方法实现油菜田地块边界提取.首先,以过绿指数方式灰度化图像,区分裸露地表与植被覆盖区域,其次,通过直方图分析、轮廓检测提取地块主体部分;最后,通过简单线性迭代聚类(SLIC)和VGG16模型相结合,划分网格,识别过分割区域中的作物种植区域,提取完整地块.对比所提算法与传统边界检测算法地块边界提取效果,结果表明:所提模型的平均交并比和平均准确率分别为95.9%、96.0%,边界提取精度和完整性明显优于传统算法.所提模型能够消除低空拍摄下杂草的影像,可为农田边界提取提供参考,可为植保无人机完全自主作业做好铺垫.

地块提取、无人机、过绿指数、超像素分割、VGG16、图像识别

44

S565(经济作物)

国家油菜产业技术体系项目CARS-12

2023-05-11(万方平台首次上网日期,不代表论文的发表时间)

共8页

137-144

相关文献
评论
暂无封面信息
查看本期封面目录

中国农机化学报

2095-5553

32-1837/S

44

2023,44(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn