10.13733/j.jcam.issn.2095-5553.2023.04.019
油菜地块边界提取研究
油菜地块精准提取可实现道路、田埂和地块三部分的分离,为植保无人机提供准确作业区域和非作业区域,推动植保无人机实现自主作业.基于甘肃省张掖市民乐县油菜地无人机低空RGB影像,构建基于简单线性迭代聚类(SLIC)分割和VGG16分类网络相结合的方法实现油菜田地块边界提取.首先,以过绿指数方式灰度化图像,区分裸露地表与植被覆盖区域,其次,通过直方图分析、轮廓检测提取地块主体部分;最后,通过简单线性迭代聚类(SLIC)和VGG16模型相结合,划分网格,识别过分割区域中的作物种植区域,提取完整地块.对比所提算法与传统边界检测算法地块边界提取效果,结果表明:所提模型的平均交并比和平均准确率分别为95.9%、96.0%,边界提取精度和完整性明显优于传统算法.所提模型能够消除低空拍摄下杂草的影像,可为农田边界提取提供参考,可为植保无人机完全自主作业做好铺垫.
地块提取、无人机、过绿指数、超像素分割、VGG16、图像识别
44
S565(经济作物)
国家油菜产业技术体系项目CARS-12
2023-05-11(万方平台首次上网日期,不代表论文的发表时间)
共8页
137-144