改进VMD和LSTM的联合收割机装配质量检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13733/j.jcam.issn.2095-5553.2023.03.019

改进VMD和LSTM的联合收割机装配质量检测方法

引用
针对联合收割机装配精度不高和装配质量难以检测的问题,提出一种基于麻雀搜索算法(SSA)优化变分模态分解(VMD)和长短时记忆神经网络(LSTM)的联合收割机装配质量检测方法.该方法首先利用SSA算法自适应寻优得到最优VMD分解模态参数K和惩罚因子α,然后利用最佳参数组合[K,α]将联合收割机振动信号分解成不同中心频率的本征模态分量IMF,并对各个IMF分别进行联合特征提取组成特征向量,最后将联合特征向量作为LSTM的输入,实现不同故障特征的分类.分析结果表明,SSA-VMD一联合特征提取方法分类准确率为98.1%,分别比集合经验模态分解(EEMD)和固定参数VMD高7.1%和6.1%,验证所提方法对联合收割机装配质量检测的优越性.

联合收割机、装配质量检测、联合特征提取、麻雀搜索算法、变分模态分解、深度学习

44

S225:TH165(农业机械及农具)

国家重点研发计划;河南省科技攻关项目;河南省高等学校重点科研项目

2023-04-04(万方平台首次上网日期,不代表论文的发表时间)

共9页

132-140

相关文献
评论
暂无封面信息
查看本期封面目录

中国农机化学报

2095-5553

32-1837/S

44

2023,44(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn