基于改进YOLOV3的自然环境下绿色柑橘的识别算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13733/j.jcam.issn.2095-5553.2021.11.24

基于改进YOLOV3的自然环境下绿色柑橘的识别算法

引用
为研究自然环境下柑橘的图像识别技术,实现柑橘的早期产量预测,提出一种改进的DYOLOV3算法,实现自然环境下未成熟的绿色柑橘的识别与检测.研究构建绿色柑橘图像数据集,并对采集的图像进行预处理;改进算法采用DenseNet的密集连接机制替换YOLOV3网络中的特征提取网络Darknet53中的后三个下采样层,加强特征的传播,实现特征的复用.通过自制的数据集对D-YOLOV3算法进行测试,并分别对改进前后网络的识别性能、不同预处理方法和不同数据量图像对模型的影响进行试验.试验结果表明,改进的D-YOLOV3算法相对于传统YOLOV3算法精确率提高6.57%,召回率提高2.75%,F1分数提高4.41%,交并比提高6.13%,平均单张检测时间为0.28 s.通过不同果实数量图像对比试验验证了算法的可行性和准确性.研究结果表明,本文提出的D-YOLOV3算法对自然环境下未成熟的绿色柑橘识别具有较高的精准度,为柑橘的早期测产提供了技术支持.

目标检测;YOLOV3算法;DenseNet算法;绿色柑橘

42

TP391.4(计算技术、计算机技术)

湖北省技术创新专项重大项目;中国科学院—国家民委农业信息技术研究;开发联合实验室招标课题;中央高校基本科研业务费专项资金项目

2021-12-27(万方平台首次上网日期,不代表论文的发表时间)

共7页

159-165

相关文献
评论
暂无封面信息
查看本期封面目录

中国农机化学报

2095-5553

32-1837/S

42

2021,42(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn