基于改进RF特征选择策略的烤烟油分高光谱特征分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13733/j.jcam.issn.2095-5553.2021.08.26

基于改进RF特征选择策略的烤烟油分高光谱特征分析

引用
针对烤烟油分特征预测模型的特征优选问题,提出一种改进RF(随机森林)算法特征选择策略,首先通过RF特征选择算法计算出各个特征的RF-Score,将特征按RF-Score的大小排序依次添加到特征子集中,若分类器分类准确率提高则保留该特征,若分类器分类准确率没有提高或降低则去除该特征.结果 表明:利用RF特征选择算法对烤烟高光谱特征进行筛选时,将176个高光谱特征中按基尼系数降序排列依次输入SVM分类器中,前64个高光谱波段特征即可使支持向量机分类器性能最佳,特征子集维度为64,其分类准确率为93.33%.利用改进RF特征选择策略对176个烤烟高光谱波段特征进行筛选,只需输入371.08 nm、716.71 nm、378.31 nm、487.77 nm、484.09 nm、535.85 nm六个波段的高光谱特征即可使支持向量机分类器性能最佳,其分类准确率为95%,特征子集维度为6,说明改进的RF特征选择策略可以在保证分类器性能的前提下能较好地进行数据降维,减小特征集的冗余.改进后的RF特征选择算法与全高光谱波段相比,特征数量减少170个,分类准确率提高3.33%;与RF特征选择算法相比,特征数量减少58个,分类准确率提高1.67%.

改进RF算法、特征选择、烤烟、油分特征、高光谱

42

S572

贵州省科技计划项目;贵州省普通高等学校工程研究中心建设项目;中国烟草总公司贵州省公司科技项目

2021-09-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

196-202

相关文献
评论
暂无封面信息
查看本期封面目录

中国农机化学报

2095-5553

32-1837/S

42

2021,42(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn