10.13733/j.jcam.issn.2095-5553.2021.08.26
基于改进RF特征选择策略的烤烟油分高光谱特征分析
针对烤烟油分特征预测模型的特征优选问题,提出一种改进RF(随机森林)算法特征选择策略,首先通过RF特征选择算法计算出各个特征的RF-Score,将特征按RF-Score的大小排序依次添加到特征子集中,若分类器分类准确率提高则保留该特征,若分类器分类准确率没有提高或降低则去除该特征.结果 表明:利用RF特征选择算法对烤烟高光谱特征进行筛选时,将176个高光谱特征中按基尼系数降序排列依次输入SVM分类器中,前64个高光谱波段特征即可使支持向量机分类器性能最佳,特征子集维度为64,其分类准确率为93.33%.利用改进RF特征选择策略对176个烤烟高光谱波段特征进行筛选,只需输入371.08 nm、716.71 nm、378.31 nm、487.77 nm、484.09 nm、535.85 nm六个波段的高光谱特征即可使支持向量机分类器性能最佳,其分类准确率为95%,特征子集维度为6,说明改进的RF特征选择策略可以在保证分类器性能的前提下能较好地进行数据降维,减小特征集的冗余.改进后的RF特征选择算法与全高光谱波段相比,特征数量减少170个,分类准确率提高3.33%;与RF特征选择算法相比,特征数量减少58个,分类准确率提高1.67%.
改进RF算法、特征选择、烤烟、油分特征、高光谱
42
S572
贵州省科技计划项目;贵州省普通高等学校工程研究中心建设项目;中国烟草总公司贵州省公司科技项目
2021-09-22(万方平台首次上网日期,不代表论文的发表时间)
共7页
196-202