基于边缘检测和BP神经网络的大豆杂草识别研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13733/j.jcam.issn.2095-5553.2020.07.028

基于边缘检测和BP神经网络的大豆杂草识别研究

引用
为提高无人机喷洒除草剂的精准度,以阔叶型杂草、禾本科杂草作为研究对象,针对传统图像识别技术准确率低,边缘信息丢失严重等问题,提出基于改进Canny边缘检测算法和BP神经网络相结合的大豆杂草图像识别方法.首先采用改进后的Canny算法对图像进行特征提取,然后将提取到的结果转化为特征矩阵向量,作为BP神经网络的输入层,最后通过BP神经网络进行大豆杂草图像识别,区分出不同种类的杂草.试验结果表明,改进后的Canny算法同BP神经网络相结合的方法在阔叶型杂草和禾本科杂草识别上,准确率分别为95.67%和93.33%,较传统Canny算法同BP神经网络相结合的方法准确率分别提升5.83%和5.66%.

Canny边缘检测、BP神经网络、杂草识别、无人机遥感

41

S24;TP391.41(农业电气化与自动化)

国家自然科学基金项目;吉林省科技攻关项目;吉林省教育厅“十三五”科技攻关项目

2020-09-11(万方平台首次上网日期,不代表论文的发表时间)

共6页

185-190

相关文献
评论
暂无封面信息
查看本期封面目录

中国农机化学报

2095-5553

32-1837/S

41

2020,41(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn