基于改进型LeNet-5的苹果自动分级方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13733/j.jcam.issn.2095-5553.2020.07.016

基于改进型LeNet-5的苹果自动分级方法

引用
针对目前传统机器学习对苹果分级的局限性,改进经典卷积神经网络LeNet-5模型以提高分级准确率.试验在原基础上添加卷积层至4层以加深网络深度,改用LeakyReLU激励函数并加入Dropout层防止过拟合,修改输入图像大小为32×32×3.同时将此与GoogLeNet迁移模型、初始LeNet-5模型、传统机器学习进行对比.试验对不同等级的红富士苹果进行训练与测试,发现改进后的LeNet-5效果最好,测试集准确率达98.37%、AUC值为0.907 5,识别一个苹果仅需0.12 s,能够满足工厂自动化分级的需求.综上,改进型LeNet-5模型可用于苹果的高效分级.

苹果分级、改进型LeNet-5、卷积神经网络、深度学习

41

S24;TP183(农业电气化与自动化)

国家自然科学基金项目81803234

2020-09-11(万方平台首次上网日期,不代表论文的发表时间)

共6页

105-110

相关文献
评论
暂无封面信息
查看本期封面目录

中国农机化学报

2095-5553

32-1837/S

41

2020,41(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn