基于机器视觉的蔬菜生长状况分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13733/j.jcam.issn.2095-5553.2016.10.036

基于机器视觉的蔬菜生长状况分析

引用
蔬菜植株面积大小是评估其生长状况的重要依据.本文采用基于机器视觉的图像处理技术,获取并分析蔬菜的生长状况,其关键在于如何准确地分割图像并计算叶面积大小.为此,通过对采用传统的阈值分割算法、传统的K-means分割算法和L*a*b*空间下的K-means分割算法所输出结果的对比分析,结果表明在L*a*b*空间下进行的K-means分割,在保留蔬菜叶片表面信息的同时不仅有效地分割图像,而且能以彩色图像的形式输出.本文选取了30株绿色蔬菜,计算其在第15天、30天、45天的叶面积大小,通过对比同一蔬菜在不同时间与同一时间及同期内不同蔬菜的叶面积,评估得到这30株蔬菜的生长状况.

生长状况、阈值分割、L*a*b*空间、K-means聚类、叶面积计算

37

S24(农业电气化与自动化)

国家自然科学基金51375084;中央高校基本科研业务费专项资金资助15D110316、15D110326、15D110314

2016-11-10(万方平台首次上网日期,不代表论文的发表时间)

共4页

162-165

相关文献
评论
暂无封面信息
查看本期封面目录

中国农机化学报

2095-5553

32-1837/S

37

2016,37(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn