支持向量机在建立2型糖尿病预测模型中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

支持向量机在建立2型糖尿病预测模型中的应用

引用
目的应用支持向量机(SVM)构建2型糖尿病预测模型的方法.方法 简述SVM的原理、特点,并以北京市某社区健康监测档案数据为例,应用matlab软件结合libsvm工具箱实现数据分析.结果 通过对2型糖尿病队列数据的分析发现,归一化可以提高预测模型的准确性,不同核函数对预测模型的影响较大,多项式核函数拟合模型最差,5次交互验证准确率和回代训练样本准确率为92.7%,预测检验样本准确率为93.1%;sigmoid核函数拟合的预测模型5次交互验证准确率为93.7%,回代训练样本准确率达到94.0%,预测检验样本准确率为97.3%;径向基核函数拟合的预测模型最佳,5次交互验证准确率为94.5%,回代训练样本准确率为95.1%,预测检验样本准确率为98.7%.结论 SVM可以用于2型糖尿病的预测分析,得到准确率较高的预测模型.

支持向量机、风险评估、糖尿病、2型

18

R587.1(内分泌腺疾病及代谢病)

2011-03-24(万方平台首次上网日期,不代表论文的发表时间)

560-562

相关文献
评论
暂无封面信息
查看本期封面目录

中国慢性病预防与控制

1004-6194

12-1196/R

18

2010,18(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn