基于PCA-BP神经网络的瓦斯涌出量预测分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于PCA-BP神经网络的瓦斯涌出量预测分析

引用
针对目前矿井回采工作面瓦斯涌出量预测准确率低、误差率大等问题,提出基于主成分回归分析以及BP神经网络原理和方法来预测回采工作面瓦斯涌出量,依据井下现场实测的数据,通过多元统计分析软件SPSS开展相关数据处理,分析影响工作面瓦斯涌出量11个因素之间的相互关系且提取主成分,来得到BP神经网络中的输入参数,并借助PCA-BP神经网络的方法建立回采工作面瓦斯涌出量预测模型.结果 证明:使用PCA-BP神经网络方法的预测值与实际值最大相对误差为2.820%,最小相对误差为2.036%,平均相对误差为2.357%.

主成分分析、SPSS、BP神经网络、瓦斯含量、埋深

16

TD712;X913.4;U461.91

国家自然科学基金51274116

2019-10-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

3-8

相关文献
评论
暂无封面信息
查看本期封面目录

中国煤层气

1672-3074

11-5011/TD

16

2019,16(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn