基于IPSO-ELM模型的尾矿坝稳定性分析
为了更准确地对尾矿坝稳定性进行预测,采用训练速度快、参数设置简单、准确度较高的极限学习机(ELM)模型,针对ELM模型在训练过程中随机产生的连接权值和隐含层阈值,导致泛化能力不足、模型稳定性差等问题,引入基于线性递减权重法改进的粒子群算法(IPSO)对其进行优化,提出了尾矿坝稳定性预测的改进粒子群优化极限学习机(IPSO-ELM)模型.将该模型运用到尾矿坝实例预测中,在选取的35组样本数据中,前30组作为训练样本,后5组作为测试样本,以内摩擦角、边坡角、尾矿坝材料重度、孔隙压力比、内聚力和边坡高度6个尾矿坝稳定性影响因素为输入参数,以尾矿坝稳定性安全系数为输出参数,将预测结果与ELM模型和PSO-ELM模型对比,结果表明,IPSO-ELM模型有较高的预测精度,预测值逼近于实际值,验证了IPSO-ELM模型在尾矿坝稳定性评价中的可靠性和有效性.
尾矿坝;稳定性;粒子群算法;极限学习机;线性递减权重法
31
TD926.4(选矿)
辽宁省教育厅重点项目601009877-36
2022-03-25(万方平台首次上网日期,不代表论文的发表时间)
共6页
61-66