基于IPSO-ELM模型的尾矿坝稳定性分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于IPSO-ELM模型的尾矿坝稳定性分析

引用
为了更准确地对尾矿坝稳定性进行预测,采用训练速度快、参数设置简单、准确度较高的极限学习机(ELM)模型,针对ELM模型在训练过程中随机产生的连接权值和隐含层阈值,导致泛化能力不足、模型稳定性差等问题,引入基于线性递减权重法改进的粒子群算法(IPSO)对其进行优化,提出了尾矿坝稳定性预测的改进粒子群优化极限学习机(IPSO-ELM)模型.将该模型运用到尾矿坝实例预测中,在选取的35组样本数据中,前30组作为训练样本,后5组作为测试样本,以内摩擦角、边坡角、尾矿坝材料重度、孔隙压力比、内聚力和边坡高度6个尾矿坝稳定性影响因素为输入参数,以尾矿坝稳定性安全系数为输出参数,将预测结果与ELM模型和PSO-ELM模型对比,结果表明,IPSO-ELM模型有较高的预测精度,预测值逼近于实际值,验证了IPSO-ELM模型在尾矿坝稳定性评价中的可靠性和有效性.

尾矿坝;稳定性;粒子群算法;极限学习机;线性递减权重法

31

TD926.4(选矿)

辽宁省教育厅重点项目601009877-36

2022-03-25(万方平台首次上网日期,不代表论文的发表时间)

共6页

61-66

相关文献
评论
暂无封面信息
查看本期封面目录

中国矿业

1004-4051

11-3033/TD

31

2022,31(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn