基于GA-BP模型的露天矿边坡稳定性预测
针对现有研究方法在预测露天矿边坡稳定性时存在适用性不强和误差大的问题,基于遗传算法对BP神经网络进行改进,提出一种露天矿边坡稳定性预测模型.该模型以坡体容重、黏聚力、内摩擦角、边坡倾角、边坡高度和孔隙压力6个参数为输入变量,以安全系数为输出变量,随后利用该模型对露天矿边坡的实例进行分析,与传统BP神经网络预测模型性能进行比较.研究结果表明:GA-BP模型在进行露天矿边坡稳定性预测时效果好,具有误差小和计算精度高的优点,为准确预测露天矿边坡稳定性提供了一种新的方法.
BP神经网络、遗传算法、GA-BP模型、边坡稳定性、预测模型
28
TU753(建筑施工)
2019-06-28(万方平台首次上网日期,不代表论文的发表时间)
共5页
144-148