基于知识图谱和多任务学习的工业生产关键设备故障诊断方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于知识图谱和多任务学习的工业生产关键设备故障诊断方法

引用
针对工业生产关键设备故障数据稀疏的问题和故障诊断的需求,本文提出了一种基于知识图谱和多任务学习的工业生产关键设备故障诊断模型MKFD(multi-task learning for knowledge graph-enhanced fault diagnosis),通过对故障根因的推断实现故障诊断.设计了多任务学习框架,并构造了一种改进十字绣单元用于实现框架内子任务之间的信息共享.利用运维数据构建故障现象-故障根因关联矩阵,使用多层感知机搭建知识图谱嵌入模型;分别将关联矩阵嵌入和知识图谱嵌入作为多任务学习框架中的两个子任务,通过子任务的交替学习,优化MKFD模型参数,实现对故障根因的推断,从而达到故障诊断的目的.最后,基于国内某工业企业的运维数据所构建的两个工业生产关键设备故障知识图谱对上述方案进行了验证实验,结果证明所提出的方法具有良好的性能.

故障诊断、知识图谱、多任务学习、工业生产关键设备、推荐系统

53

TP393.07;TH165.3;TP277

科技创新新一代人工智能重大项目;思源联盟开放基金项目

2023-05-30(万方平台首次上网日期,不代表论文的发表时间)

共16页

699-714

相关文献
评论
暂无封面信息
查看本期封面目录

中国科学(信息科学)

1674-7267

11-5846/N

53

2023,53(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn