时变动力系统的高阶乘法摄动方法
针对时变线性动力系统,提出了一种高阶乘法摄动方法.首先用不大的步长将时间域离散,在每个时间段上将动力系统的系数矩阵分解为一个大量和一个小量之和,后者为该段上相对时间坐标的一阶小量;然后利用变量变换,将原系统转换为一阶摄动系统.对于一阶摄动系统,仍然将系数矩阵分解为大量与高一阶小量之和,再利用变量变换将其化为更高阶的摄动系统.最后的高阶摄动系统在舍弃系数矩阵的高阶小量后可解析求解,然后由一系列反变换,便可确定原问题的解答.由于本方法确定的传递矩阵为一系列指数矩阵之积,可利用精细积分法精确计算,故本方法具有极高的精度和效率,以及良好的稳定性.对于哈密顿系统,该方法实际为一种高阶保辛摄动方法.算例结果表明,即使选取较大的时间步长,本方法也能给出较好的精度,并且随着摄动次数的增加,摄动解答能迅速趋向于精确解.
时变动力系统、指数矩阵、精细积分法、保辛、高阶乘法摄动、递推算法
42
O175.13(数学分析)
国家自然科学基金11172334
2012-10-29(万方平台首次上网日期,不代表论文的发表时间)
185-191