低维特征空间中基于旋转图像的三维环境模型配准方法
近年来,异类机器人之间(如飞行机器人和地面机器人)的协作成为机器入学研究发展的一个新的领域.异类机器人协作的难点之一是协作环境建模,而由于所获得的环境模型具有不同的观测视角和尺度,其环境建模中的模型配准是一个难点和关键.目前,能够适用于大视角差、大尺度差场景配准的方法并不多,基于旋转图像的配准方法被认为是一种可行方案,但其中存在的计算负担大和在野外环境中的鲁棒性差使得其也很难在实际系统中应用.基于此,面向三维点云环境模型,以旋转图像为基础,提出了一种新的基于低维特征空间的模型配准方法.首先,通过引入模型曲率、旋转图像熵值和激光反射强度3个特征构建了一个三维特征空间,得到候选对应点集合.然后,在候选对应点集合中利用旋转图像的方法查找正确的对应关系,实现模型配准.由于低维特征空间的引入,基于旋转图像特征的对应点搜索区域大大减小,因此算法计算效率得到了极大改善.同时由于引入的新特征与场景旋转图像特征的互补性,算法的鲁棒性和精确性也得到了提升.这些性能改进最后通过实验得到了验证.
环境建模、旋转图像、模型配准、机器人协作
44
国家自然科学基金61035005,61305121
2014-03-27(万方平台首次上网日期,不代表论文的发表时间)
共11页
108-118