解决非可微凸优化问题的次梯度反馈神经网络
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1674-7259.2006.08.001

解决非可微凸优化问题的次梯度反馈神经网络

引用
发展了Leung等人所提出的解决非线性凸规划问题的动态反馈神经网络模型, 引入基于次梯度动态反馈神经网络模型解决非可微凸优化问题. 对于无约束非可微凸优化问题, 假定目标函数是强迫性的凸函数, 证明了由投影次梯度构造的反馈神经网络轨道从任意初值点出发都收敛于一个渐近稳定的平衡点, 该平衡点为原无约束问题的最优解. 对于约束非可微凸优化问题, 在目标函数是强迫性的凸函数, 约束函数也具有凸性的假定下, 依次造构能量函数序列和相应的基于次梯度的动态反馈子网络的模型, 建立了收敛定理并给出了停时条件. 最后, 设计了两种有效的算法并结合一些实例进行了仿真验证.

投影次梯度、非可微凸优化、收敛性、反馈神经网络

36

TN7(基本电子电路)

国家重点基础研究发展计划973计划2002CB312205;国家自然科学基金60574077

2006-09-18(万方平台首次上网日期,不代表论文的发表时间)

共14页

811-824

相关文献
评论
暂无封面信息
查看本期封面目录

中国科学E辑

1006-9275

11-3757/N

36

2006,36(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn