集合卡曼滤波在遥感反演地表参数中的应用--以核驱动模型反演BRDF为例
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1674-7240.2005.08.012

集合卡曼滤波在遥感反演地表参数中的应用--以核驱动模型反演BRDF为例

引用
遥感反演中使用先验知识, 特别是在观测信息不足情况下, 对于保证反演计算的稳定性和降低反演结果的不确定性具有重要意义. 常用的最优算法, 不能较好提供先验知识的后验分布, 也就不能直接得到反演结果不确定性, 这对于遥感应用是不利的. 引入集合卡曼滤波(EnKF)的方法来实现地表参数的遥感反演, 它能在有效获得反演结果的同时给出先验知识的后验分布. 为了显示其反演优势, 将MODIS标准AMBRALS算法、SCE-UA高效全局最优算法和集合卡曼滤波算法进行了比较. 着重讨论了在观测不足时, 引入先验知识并以反演结果的不确定性为比较指标的情况下, 不同核组合的核驱动模型在不同地表类型上对反照率的反演能力.

遥感反演、先验知识、后验分布、集合卡曼滤波、BRDF、核驱动模型、反照率

35

P5(地质学)

科技部科研项目G2000077908;中国科学院资助项目40101020;教育部优秀青年教师资助计划

2005-10-20(万方平台首次上网日期,不代表论文的发表时间)

共9页

790-798

相关文献
评论
暂无封面信息
查看本期封面目录

中国科学D辑

1006-9267

11-3756/N

35

2005,35(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn