血管性认知障碍早期预测机器学习模型的构建
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-9771.2021.09.011

血管性认知障碍早期预测机器学习模型的构建

引用
目的 探索以血管性高危因素构建的机器学习模型早期预测血管性认知障碍的预测性能.方法 2020年4月至9月,收集本院住院患者及陪护人员70例的人口学资料、血管性高危因素,行蒙特利尔认知评估量表(MoCA)评估,根据评估结果将受试者分为正常组、血管性轻度认知障碍(VaMCI)组和痴呆组;单因素方差分析筛选组间存在显著性差异的血管性高危因素,采用支持向量机(SVM)和极限学习机(ELM)构建预测模型;采用接受者操作特征曲线比较两种模型的预测性能.结果 根据MoCA评估结果,正常组32例,VaMCI组23例,痴呆组15例;三组间收缩压、空腹血糖、总胆固醇、低密度脂蛋白、血尿酸有显著性差异(F>3.318,P<0.05);SVM模型预测VaMCI的曲线下面积最高,为0.911(P<0.01),SVM模型优于ELM模型.结论 基于血管性高危因素构建的SVM预测模型优于ELM模型.

血管性认知障碍;支持向量机;极限学习机;机器学习;预测模型

27

R743(神经病学与精神病学)

中山大学临床医学研究5010计划项目No.2014001

2021-10-14(万方平台首次上网日期,不代表论文的发表时间)

共6页

1072-1077

相关文献
评论
暂无封面信息
查看本期封面目录

中国康复理论与实践

1006-9771

11-3759/R

27

2021,27(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn