基于融合特征约减和支持向量机的控制图模式识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1004-132X.2017.08.009

基于融合特征约减和支持向量机的控制图模式识别

引用
为提高产品加工过程中质量监测的智能化程度,在运用控制图描述质量波动的基础上,提出了一种基于融合特征约减的KPCA-SVM控制图分类方法.先通过蒙特卡洛模拟生成控制图数据集,提取统计特征和形状特征,并将其与原始特征相融合,运用核主成分分析对高维融合特征降维,再使用遗传算法优化支持向量机的参数.通过仿真实验,将降维前后、不同分类器的识别精度进行了比较,结果表明运用所提方法能够得到更好的识别效果.

控制图、模式识别、特征融合、降维、核主成分分析、支持向量机

28

TH165.4;TP391.4

国家自然科学基金资助项目51205230;湖北省自然科学基金资助项目2015CFB445;宜昌市自然基础科学研究与应用项目A15-302-a02;赛尔网络下一代互联网技术创新项目NGⅡ20150801

2017-06-02(万方平台首次上网日期,不代表论文的发表时间)

共6页

930-935

相关文献
评论
暂无封面信息
查看本期封面目录

中国机械工程

1004-132X

42-1294/TH

28

2017,28(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn