基于CT影像组学模型鉴别诊断小细胞肺癌与非小细胞肺癌
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13929/j.issn.1672-8475.2021.08.006

基于CT影像组学模型鉴别诊断小细胞肺癌与非小细胞肺癌

引用
目的 观察基于CT影像组学模型鉴别诊断小细胞肺癌(SCLC)与非小细胞肺癌(NSCLC)的效能.方法 回顾性分析1524例经手术病理确诊的肺癌患者,其中526例SCLC(SCLC组),998例NSCLC(NSCLC组).采用特征提取软件MaZda(Version 4.6)提取CT图像中病灶最大层面的纹理特征参数,以Correlation相关性分析和最小绝对收缩和选择算子(LASSO)算法对数据进行降维,筛选组间差异明显的影像组学特征,构建影像组学模型.以7∶3比例将全部患者分为训练集和验证集,采用7种机器学习模型,包括Logistic回归、随机森林(RF)、贝叶斯算法(NB)、决策树(DT)、卷积神经网络(CNN)、邻近算法(KNN)和支持向量机(SVM)模型对数据集进行处理,根据其在验证集的准确率选择最佳分类器模型,采用受试者工作特征(ROC)曲线分析该分类器模型对SCLC与NSCLC的鉴别诊断效能.结果 针对每个病灶提取306个纹理特征参数,最终筛选出20个组间差异明显的影像组学特征,并以之构建预测模型.模型训练结果显示,KNN模型鉴别诊断SCLC与NSCLC的准确率最高,其在训练集的AUC为0.88、准确率81.34%、特异度97.00%、敏感度51.63%,在验证集的AUC为0.82、准确率78.82%、特异度95.00%、敏感度48.10%.结论 基于CT影像组学结合机器学习算法建立的诊断模型可用于鉴别SCLC与 NSCLC,以KNN模型的效能更优.

癌,非小细胞肺;体层摄影术,X线计算机;影像组学

18

R734.2;R814.42(肿瘤学)

吉林省卫生与健康技术创新项目2018J026

2021-10-12(万方平台首次上网日期,不代表论文的发表时间)

共5页

474-478

相关文献
评论
暂无封面信息
查看本期封面目录

中国介入影像与治疗学

1672-8475

11-5213/R

18

2021,18(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn