基于门控循环神经网络的阀门泄漏检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.2096-2835.2021.02.003

基于门控循环神经网络的阀门泄漏检测方法

引用
目的:针对阀门常见的泄漏故障,研究一种阀门泄漏故障检测方法.方法:采用声发射技术与深度学习相结合的方法,通过声发射技术对阀门内漏信号进行了采集,搭建了以门控循环神经网络(GRU)为核心的阀门内漏诊断模型.该方法针对阀门内漏的特点,发挥了声发射技术在无损检测领域上的优越性,并利用GRU捕捉所采集声发射数据的长期依赖性,最终改善了传统循环神经网络的梯度弥散的问题.结果:经过实验和数据分析,提出了基于声发射技术和门控循环神经网络的故障检测方法,从而提升了阀门内漏故障识别的准确率.结论:本方法利用重构的去噪数据进行处理来提高模型效果,并充分发挥GRU在时间序列预测上的优势,最后提升了对阀门微小泄漏检测的精度.

计量、阀门泄漏、门控循环神经网络、声发射、故障诊断

32

TH48(气体压缩与输送机械)

国家重点研发计划;浙江省自然科学基金

2021-07-21(万方平台首次上网日期,不代表论文的发表时间)

共9页

161-169

相关文献
评论
暂无封面信息
查看本期封面目录

中国计量大学学报

2096-2835

33-1401/C

32

2021,32(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn