基于Stacking集成学习模型的气态亚硝酸预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-6923.2020.02.014

基于Stacking集成学习模型的气态亚硝酸预测

引用
建立了基于Stacking集成学习下气态亚硝酸(HONO)预测模型.利用非相干宽带腔增强吸收光谱(IBBCEAS)系统获得的北京城区HONO的浓度,结合HONO的来源,选取了O3、CO、SO2、NO、NO2、NOy、温度(T)、相对湿度(RH)、风速(WS)、j(HONO)、j(NO2)、j(O1D)作为特征数据,通过对HONO的平均日变化分析,将测量时间按小时转换为新特征.分别以极端梯度提升(XGBoost)、轻量化梯度促进机(LightGBM)以及随机森林(RF)算法构建基模型,采用5折交叉验证的方式划分训练集,将基模型输出的结果作为新特征集,并将新特征集作为第二层线性回归模型的输入,通过对这两层中的模型进行训练,最终得到Stacking集成学习HONO预测模型.通过对模型的特征重要度分析和计算夜间交通直接排放所占的贡献,表明CO是模型预测中重要的影响因子,说明机动车的直接排放是该区域冬季时期HONO的重要来源.利用测试集分别对单模型和融合后模型的预测性能进行评估,3个单模型的预测结果与测量值的相关系数都达到了0.91以上,其中Stacking融合后的模型性能最好,相关系数达到了0.94,平均绝对误差和均方根误差分别为0.307×10-9和0.453×10-9,结果表明基于Stacking集成学习方式下HONO预测模型的可解释性和推广性.

Stacking、K折交叉验证、集成、气态亚硝酸、预测

40

X511(大气污染及其防治)

国家自然科学基金资助项目;中国科学院重点部署项目;国家重点研发计划项目;中国科学院安徽光学精密机械研究所所长基金资助项目

2020-06-18(万方平台首次上网日期,不代表论文的发表时间)

共9页

582-590

相关文献
评论
暂无封面信息
查看本期封面目录

中国环境科学

1000-6923

11-2201/X

40

2020,40(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn