基于支持向量机回归和小波变换的O3预报方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-6923.2019.09.015

基于支持向量机回归和小波变换的O3预报方法

引用
使用南京工业区2016年6月1日~8月15日的臭氧(O3)、O3前体物及常规气象数据,结合多元线性回归(MLR)方法和小波变换(WT)改进支持向量机回归(SVR)对O3小时浓度的预报精度.结果表明,通过WT方法将一个高变异性的序列转化为多个低变异性的序列后再处理可提高预报精度,M-WT-SVR预报的决定系数(R2)达到0.90,平均绝对误差(MAE)、平均绝对百分误差(MAPE)和均方根误差(RMSE)分别为3.86×10-9、28.26%和5.57×10-9,优于M-SVR和SVR.低层细节序列主要与NO、NO2和芳香烃有关,而更高层的近似序列受到气象条件、前体物和O3前期浓度共同影响.与经典的MLR方法相比,M-WT-SVR对O3小时浓度的预报有明显优势.

支持向量机回归、小波变换、多元线性回归、臭氧预报、臭氧小时浓度

39

X511(大气污染及其防治)

国家自然科学基金资助项目;国家重点研发计划专项;江苏省高校“青蓝工程”项目

2020-09-15(万方平台首次上网日期,不代表论文的发表时间)

共8页

3719-3726

相关文献
评论
暂无封面信息
查看本期封面目录

中国环境科学

1000-6923

11-2201/X

39

2019,39(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn