基于ANN的SBBR-CRI处理模拟生活污水及其仿真研究
采用序批式生物膜反应器(SBBR)与人工快速渗滤系统(CRI)工艺结合对模拟生活污水进行处理,由于该工艺影响因素与出水参数的复杂非线性关系,利用人工神经网络(ANN)对SBBR-CRI处理生活污水的过程进行仿真模拟.在MATLAB语言环境下,以DO、淹没时间/落干时间、曝气时间/停曝时间、进水COD、进水NH4+-N、进水TP为输入因素,出水COD、NH4+-N、TN和TP为输出因素,构建具有自适应学习规则的人工神经网络.结合最优网络运行参数:隐含层节点数6,初始学习率0.13,动量因子0.6,训练次数6000次,对样本仿真学习,预测值与实际值拟合度较好,样本的绝对平均误差率在7.5%之内,均方根误差均在0.085之内.结果表明,当DO为2mg/L,曝气时间/停曝时间为2/1,淹没时间/落干时间为1/3时,NH4+-N去除率能达到98%以上,TN和TP去除率85%以上,COD去除率94%以上.通过权重分析,进水NH4+-N、DO和进水TP对出水参数影响较大.
人工神经网络、权重、SBBR、人工快渗、生活污水
30
X703(一般性问题)
国家自然科学基金资助项30970105;长沙市科技计划重点资助项目K0802151-31;国家水体污染控制与治理科技重大专项资助课题2009ZX07212-001-02
2011-01-15(万方平台首次上网日期,不代表论文的发表时间)
共6页
1453-1458