基于DWT-LSTM的航道水位智能预测模型研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-4653.2021.02.016

基于DWT-LSTM的航道水位智能预测模型研究

引用
航道水位信息是内河船舶安全通航、合理配载的决策依据之一.为揭示内河航道水位特征、提高短时预测精度,提出了一种基于小波分析(DWT)和长短时记忆(LSTM)的耦合神经网络模型,以汉口水位站为例,验证了模型有效性,并与传统BP神经网络、小波分析-BP神经网络和LSTM神经网络模型进行对比分析.研究结果表明:四类模型均可满足短时预测需求,合格率均大于90%;当航道水位变幅剧烈时,BP神经网络耦合模型误差较大;DWT-LSTM耦合神经网络模型性能较经典LSTM模型分别提升约10.9%(预测周期1-2天)、25.2%(预测周期3-5天).研究成果可为船舶通航风险评估、航道条件分析等提供技术支撑.

航道水位;智能预测;小波分析;LSTM神经网络;BP神经网络

44

U697.31(水路运输技术管理)

国家重点研发计划专项;国家自然科学基金项目;中央高校基本科研业务费专项资金项目

2021-09-28(万方平台首次上网日期,不代表论文的发表时间)

共6页

97-102

相关文献
评论
暂无封面信息
查看本期封面目录

中国航海

1000-4653

31-1388/U

44

2021,44(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn