基于YOLOv3的船舶目标检测算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-4653.2020.01.013

基于YOLOv3的船舶目标检测算法

引用
为提高船舶目标智能检测的精度和实时性,提出一种基于YOLOv3算法的船舶目标检测方法,可用于视频图像的监测与跟踪.参照PASCAL VOC数据集格式,构建船舶目标检测数据集,采用k-means聚类先验框、mixup、标签平滑化等方法对算法进行改进和优化,在GPU(Graphic Processing Unit)云服务器中完成算法模型的训练和检测,并与FasterR-CNN、SSD(Single Shot MultiBox Detector)、原始YOLOv3等算法进行模型性能的试验对比.试验结果表明:改进的算法明显优于其他算法,其在测试集上的平均精度均值(mean Average Precision,mAP)和检测速度分别达到89.90%和30每秒检测帧数(Frames Per Second,FPS).

船舶、目标检测、深度学习、YOLOv3

43

TP391.4(计算技术、计算机技术)

2020-05-19(万方平台首次上网日期,不代表论文的发表时间)

共6页

67-72

相关文献
评论
暂无封面信息
查看本期封面目录

中国航海

1000-4653

31-1388/U

43

2020,43(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn