基于SARIMA-BP模型的港口船舶交通流量预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-4653.2020.01.010

基于SARIMA-BP模型的港口船舶交通流量预测

引用
为提高船舶交通流量预测精度,提出一种季节性自回归移动平均(Seasonal Autoregressive Integrated Moving Average,SARIMA)模型和BP神经网络的误差校正集成模型.以深圳港2011-2017年的数据为研究样本,对原始数据进行预处理,构建最优SARIMA模型,以该模型求出的残差序列作为BP神经网络的输入,将两个模型预测结果进行整合,得到集成模型的预测结果.试验结果表明:该误差校正集成模型与两个单一模型相比,体现出船舶交通流量数据的季节性特征,具有较好的预测精度,为港口船舶交通流量预测提供一种更为有效的方法.

船舶交通流量、预测、季节性自回归移动平均模型、BP神经网络

43

U692(水路运输技术管理)

国家自然科学基金;上海市科委科研项目

2020-05-19(万方平台首次上网日期,不代表论文的发表时间)

共7页

50-55,94

相关文献
评论
暂无封面信息
查看本期封面目录

中国航海

1000-4653

31-1388/U

43

2020,43(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn