基于Hopfield神经网络的雷达多目标跟踪
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-4653.2020.01.002

基于Hopfield神经网络的雷达多目标跟踪

引用
针对海上船舶雷达在多目标跟踪过程中实时性较差和不能快速响应的问题,提出目前密集杂波情况下多目标跟踪中最为有效的数据关联算法——联合概率数据关联(Joint Probabilistic Data Association,JPDA)算法.为解决JPDA随着目标增多的情况会出现的组合“爆炸”及计算量较大导致跟踪实时性较差的问题,从分析联合概率数据关联确认矩阵着手,依据Hopfield神经网络在解决旅行商问题(Travelling Salesman Problem,TSP)时的思路,提出基于Hopfield神经网络联合概率数据关联(Hopfield Neural Network Joint Probability Data Association,H-JPDA)来改进联合概率数据关联算法,通过简化矩阵拆分过程,显著减少计算量,提高跟踪的实时性.基于上述改进的神经网络联合概率数据关联算法,通过MATLAB对多目标跟踪进行仿真,仿真结果表明该算法能提高跟踪的实时性和快速响应能力.

雷达、多目标跟踪、Hopfield神经网络、数据关联

43

U698.6(水路运输技术管理)

国家自然科学基金;辽宁省自然科学基金

2020-05-19(万方平台首次上网日期,不代表论文的发表时间)

共5页

7-11

相关文献
评论
暂无封面信息
查看本期封面目录

中国航海

1000-4653

31-1388/U

43

2020,43(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn