基于广义回归神经网络的船舶交通量预测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-4653.2011.02.015

基于广义回归神经网络的船舶交通量预测模型

引用
船舶交通量受多种环境与社会因素的影响,使得船舶交通量预测存在复杂性与非线性的特点.在分析现有预测模型和方法不足的基础上,介绍了广义回归神经网络GRNN的基本原理与拓扑结构.不同类型船舶受各类因素影响的程度不同,根据天津港VTS(Vessel Traffic Services)中心提供的船舶交通量数据,按船舶种类将船舶交通量分为六类,利用GRNN神经网络分别进行预测.预测结果表明GRNN神经网络具有很强的非线性拟合能力,有效解决了天津港船舶交通量预测中的小样本问题,提高了整个预测系统的精度与稳定性.

水路运输、船舶交通量、广义回归神经网络、小样本问题、组合预测模型

34

U692.3;TP274(水路运输技术管理)

2011-10-21(万方平台首次上网日期,不代表论文的发表时间)

共5页

74-77,85

相关文献
评论
暂无封面信息
查看本期封面目录

中国航海

1000-4653

31-1388/U

34

2011,34(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn