基于灰色模型和RBF神经网络的MEMS陀螺温度补偿
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于灰色模型和RBF神经网络的MEMS陀螺温度补偿

引用
MEMS陀螺的零偏随温度呈非线性变化,同时含有较大的随机噪声.针对传统的多项式模型难以精确表达零偏随温度变化的问题,提出了一种基于灰色模型和RBF神经网络的MEMS陀螺温度补偿方法:首先用灰色模型对数据进行预处理,以减小原始数据的噪声;然后用降噪后的样本数据对RBF神经网络进行训练.在相同的训练次数下训练误差可减小一个数量级.验证试验结果表明,采用该模型补偿后的陀螺零偏误差较传统的多项式模型减小一个数量级,较未经预处理的RBF神经网络减小2/3.

MEMS陀螺、灰色模型、RBF神经网络、温度补偿

18

U666.1 (船舶工程)

天津市科技支撑重点项目08ZCKFGX04000

2011-04-15(万方平台首次上网日期,不代表论文的发表时间)

共5页

742-746

相关文献
评论
暂无封面信息
查看本期封面目录

中国惯性技术学报

1005-6734

12-1222/O3

18

2010,18(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn