10.3969/j.issn.1006-3897.2008.06.011
可变维核心矩阵LU分解方法
在线性规划问题的发展过程中,基的分解技术一直是求解线性规划问题算法实现的一个重要问题.在传统的线性规划算法中,基逆的乘积形式(PFI)方法和LU分解方法很好的解决了基逆的稀疏性、累计误差等同题.随着线性规划动态分解和核心矩阵的出现,矩阵的动态分解成为了一个新的研究课题.本文主要研究和分析单纯形算法中的核心矩阵的动态分解和存储方法,将经典的LU分解方法应用于核心矩阵的动态分解和存储中,保持了核心距阵的数值稳定性和稀疏性.同时,本文提出置换消元方法可以大大减少LU更新的时间.
线性规划、核心矩阵、动态分解、LU分解
16
O221.1(运筹学)
2009-03-10(万方平台首次上网日期,不代表论文的发表时间)
共8页
67-74