Efficient measurement and optical proximity correction modeling to catch lithography pattern shift issues of arbitrarily distributed hole layer
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.1007/s11465-024-0795-1

Efficient measurement and optical proximity correction modeling to catch lithography pattern shift issues of arbitrarily distributed hole layer

引用
With the continued shrinking of the critical dimensions (CDs) of wafer patterning, the requirements for modeling precision in optical proximity correction (OPC) increase accordingly. This requirement extends beyond CD controlling accuracy to include pattern alignment accuracy because misalignment can lead to considerable overlay and metal-via coverage issues at advanced nodes, affecting process window and yield. This paper proposes an efficient OPC modeling approach that prioritizes pattern-shift-related elements to tackle the issue accurately. Our method integrates careful measurement selection, the implementation of pattern-shift-aware structures in design, and the manipulation of the cost function during model tuning to establish a robust model. Confirmatory experiments are performed on a via layer fabricated using a negative tone development. Results demonstrate that pattern shifts can be constrained within a range of ?1 nm, remarkably better than the original range of ?3 nm. Furthermore, simulations reveal notable differences between post OPC and original masks when considering pattern shifts at locations sensitive to this phenomenon. Experimental validation confirms the accuracy of the proposed modeling approach, and a firm consistency is observed between the simulation results and experimental data obtained from actual design structures.

computational lithography、optical proximity correction、modeling、pattern shift、metrology

19

2024-09-26(万方平台首次上网日期,不代表论文的发表时间)

共1页

24

相关文献
评论
暂无封面信息
查看本期封面目录

Frontiers of Mechanical Engineering

2095-0233

11-5984/TH

19

2024,19(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn