基于DDPG的风电场动态参数智能校核知识学习模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11930/j.issn.1004-9649.202102071

基于DDPG的风电场动态参数智能校核知识学习模型

引用
随着风电渗透率的增加,电力电子化元件大量接入,风电场表现出的动态特性愈发复杂,传统的基于少量案例、解析的仿真验证方法面临挑战.以深度强化学习为代表的新一代人工智能在多领域的成功应用,为风电场动态参数智能校核提供了借鉴.在双馈风电场等值模型的基础上,基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法提出了风电场动态参数智能校核知识学习模型.该模型通过大量的仿真探索并逐步得到风电场动态参数智能校正知识,实现了基于"知识"的风电场动态参数校核.最后,基于某地风电机组实测扰动数据,利用智能体习得的参数校核知识修正风电场动态行为主导参数,并与传统启发式算法进行对比,验证了所提模型的有效性.

风电场、主导参数、参数智能校正、深度强化学习

55

TP393;TM712;TP18

国家重点研发计划;国家电网有限公司总部科技项目

2022-05-25(万方平台首次上网日期,不代表论文的发表时间)

共7页

32-38

相关文献
评论
暂无封面信息
查看本期封面目录

中国电力

1004-9649

11-3265/TM

55

2022,55(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn