基于DCAE-KSSELM的变压器故障诊断方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11930/j.issn.1004-9649.202111003

基于DCAE-KSSELM的变压器故障诊断方法

引用
为了充分利用变压器发生故障时产生的大量无标签样本,提高故障诊断精度,提出基于深度收缩自编码器(DCAE)与核半监督极限学习机(KSSELM)相结合的故障诊断方法.首先使用无标签样本对DCAE网络逐层训练,初始化网络参数,然后用有标签样本数据对网络参数进行微调,最后将有标签样本与无标签样本一起作为深度收缩自编码器与核半监督极限学习机(DCAE-KSSELM)混合网络的输入并完成故障诊断.实验结果表明,所提模型稳定性好,故障诊断精度高,鲁棒性强.

变压器;故障诊断;无标签样本;收缩自编码器

55

国家自然科学基金;中央高校基本科研业务费专项资金资助项目

2022-03-02(万方平台首次上网日期,不代表论文的发表时间)

共6页

125-130

相关文献
评论
暂无封面信息
查看本期封面目录

中国电力

1004-9649

11-3265/TM

55

2022,55(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn