基于残差卷积神经网络的开关柜局部放电模式识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11930/j.issn.1004-9649.202006061

基于残差卷积神经网络的开关柜局部放电模式识别

引用
传统的开关柜局部放电模式识别方法缺乏一定的泛化性能且识别准确率低,难以在实际工程中应用.提出了一种基于残差卷积神经网络的开关柜局部放电模式识别方法,通过在网络中加入残差模块以解决随着网络层数加深导致准确度饱和后出现退化的问题,并综合利用开关柜局部放电数据的浅层与深层特征融合学习,实现模式识别.通过开关柜不同绝缘缺陷类别的局部放电模拟实验与配电站现场检测,构建了开关柜局部放电数据样本库,并进行了实验分析.实验结果表明:所提方法的识别正确率达96.06%,相比传统识别方法至少提高了20.22%,且随着训练集样本数量的增加,识别率有更大提升.综合使用特征层融合模块和残差模块,显著提升了模型的泛化性能,更适用于实际工程.

卷积神经网络、残差模块、特征层融合、局部放电、模式识别

54

中国南方电网公司科技项目配电设备状态检测数据规范化与高效处理关键技术研究与应用,082100KK52190004

2021-03-02(万方平台首次上网日期,不代表论文的发表时间)

共8页

44-51

相关文献
评论
暂无封面信息
查看本期封面目录

中国电力

1004-9649

11-3265/TM

54

2021,54(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn